Exploring impacts & feedbacks of a warming Arctic,
Engaging learners in STEM using GLOBE & NASA Assets

Project Partners:
University of Alaska Fairbanks; Association of Interior Native Educators; GLOBE Implementation Office; NASA Langley Research Center Office of Education; NASA Goddard Space Flight Center Cryosphere Branch; North Slope Borough School District and other school districts; Kenaitze Indian Tribe; 4-H Alaska; Santa Ana Community College MESA; Goldstream Group; NASA Science Mission Directorate Education Collective

Presenter Contact: Katie Spellman, klspellman@alaska.edu
Project Collaborators
Citizen Science Spectrum

<table>
<thead>
<tr>
<th></th>
<th>Theoretical or generalizable needs</th>
<th>Local community needs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Question</td>
<td>Researcher</td>
<td>Citizens</td>
</tr>
<tr>
<td>Methods Design</td>
<td>Researcher</td>
<td>Citizens with researcher assist.</td>
</tr>
<tr>
<td>Data collection</td>
<td>Citizens</td>
<td>Citizens</td>
</tr>
<tr>
<td>Data Analysis</td>
<td>Researcher</td>
<td>Researcher with citizen assist.</td>
</tr>
<tr>
<td>Use of findings</td>
<td>Researcher & Citizens</td>
<td>Citizens & Researcher</td>
</tr>
</tbody>
</table>
Assets

NASA and GLOBE data provide opportunity for climate change learning from local to global scales.

Shageluk village 8th grader organizes data in a brush pile near the school’s GLOBE post-fire succession monitoring site.
Arctic and Earth SIGNs Objectives

1: Develop a high quality climate change education program that includes NASA assets (resources and experts), citizen science, and mobile technology for formal and informal science education settings

2: Engage educators and community members in learning experiences to model best practice for inquiry-based, culturally responsive climate change science teaching

3: Engage youth, community members and educators in locally and globally important science where they produce and apply new information on the impacts of a changing global climate.
Project Overview

Target Audiences

• Primary audience- Educators in rural and indigenous communities and the youth they serve, including:
 - Pre- and in-service teachers and K-12 youth
 - Informal STEM educators (4-H leaders/others and youth
 - Community leaders (elders, tribal or town council members, etc.)

• Secondary audience- educators and students in other communities underserved in STEM
Needs assessment of target audiences

QUESTIONS
1. What issues related to climate change and citizen science are of greatest interest to our target audiences?
2. What benefits do our target audiences seek from participation in a climate change education program rooted in GLOBE citizen science, interaction with NASA scientists and assets, and civic engagement?
3. What training or support needs are there for successful participation of our target audiences?

METHOD
• Data taken from participant questionnaires or program applications from pilot activities with each target audience
• Large scale needs assessments for target audiences from other sources
Table 1. Data sources, collection methods, and sample sizes \((n)\) for Arctic and Earth SIGNs target audience needs assessment. For each audience, data were collected from both the pilot participants of the first Arctic and Earth SIGNs program activities and a larger scale, more intensive needs assessment of the same audience for a climate change education or citizen science participation.

<table>
<thead>
<tr>
<th>Target Audience</th>
<th>Arctic and Earth SIGNs Pilot Activity</th>
<th>Large-scale Needs Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Venue (length)</td>
<td>Needs assessment method</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(n)</td>
</tr>
<tr>
<td></td>
<td>Arctic and Earth SIGNs Pilot Activity</td>
<td>Large-scale Needs Assessment</td>
</tr>
<tr>
<td></td>
<td>Venue (length)</td>
<td>Needs assessment method</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(n)</td>
</tr>
<tr>
<td>Pre- & in-service teachers in rural & indigenous communities</td>
<td>GLOBE teacher training course (6-day course)</td>
<td>Coded application essay responses</td>
</tr>
<tr>
<td>4-H informal STEM educators</td>
<td>4-H Western Regional Leaders Conference (1/2-day workshop)</td>
<td>Retrospective pre- and post-survey</td>
</tr>
<tr>
<td>Rural & indigenous community members and leaders</td>
<td>Signs of the Land Camp (4-day camp)</td>
<td>Coded application essay responses</td>
</tr>
<tr>
<td>Disadvantaged undergraduate/community college students</td>
<td>Santa Ana College field research course (10-day course)</td>
<td>Coded pre-course essay responses</td>
</tr>
</tbody>
</table>
Summary of interests and benefits sought by Target Audiences

<table>
<thead>
<tr>
<th>Teachers</th>
<th>4-H leaders</th>
<th>Community leaders and members</th>
<th>Undergrads</th>
</tr>
</thead>
</table>
| - Engaging students in citizen science that braids western science and indigenous knowledge
- Students develop personal connection to climate change
- Students gain experience with practical application of STEM
- Students generate real science and use real data | - Citizen science projects on natural resources, agriculture, and environmental quality
- Youth engaged in 4-H priority areas (civic engagement, STEM) | - Opportunity for dialogue across generations and communities
- Opportunity to learn about climate change from elders and scientists
- Youth more connected with community, traditions, and empowered
- Learn about climate change mitigation strategies & impacts of climate change on daily life | - Research experience
- Networking for career development
- Mentoring from professional scientists
- See new places and explore |
Arctic and Earth SIGNs Big Idea:
We can make a difference on climate change issues by listening, inquiring, observing, and then acting.

Enduring Understandings:
1. Climate change influences our lives.
2. Climate change influences earth systems at multiple scales, and we need information at different scales to understand it.
3. Everyone can DO science.
4. We can use local and traditional knowledges and STEM to help our community adapt to climate change.
The Arctic and Earth SIGNs inquiry model
Using GLOBE, NASA, and local knowledge to make STEM learning locally relevant and have an impact

SHARE
- Learn from elders, long-term residents, and scientists about signs and impacts of climate change.

EXPLORE
- Discover what youth and adults know
- Identify key climate change issue for community
- Brainstorm investigation and stewardship ideas

APPLY
- Design and implement stewardship project to help community address the climate change issue

EXPLAIN
- Make sense of research by analyzing data and reviewing information from local experts, NASA data, and existing research

EXPERIMENT
- Collaborate with a scientist & community to develop and implement GLOBE investigation

- Do culturally responsive activities to establish knowledge base on the topic
- Talk with a NASA scientist
- Select inquiry question

- SHARE EXPLORE APPLY EXPLAIN EXPERIMENT
Culturally Responsive Learning Units

Association of Interior Native Educators curriculum update and development

- Salmon
- Fish
- Berries
- Birds
- Medicinal Plants
Climate Change and My Community Course

1. What is my personal connection with climate change?

2. How does climate change influence the Earth system?

3. How does climate change affect my community?

4. What can I do about a climate change issue in my community?
nihtsin

Rose Hips

How many petal

One rose hip

Two rose hips

Long hair rose hips

Pet ter

Hips

Bou

Hips

Bou
We are learning about the four seasons